

Welcome to sql-lint’s documentation!

Contents:

	Introduction
	What is sql-lint?

	Usage

	Command line options

	Programmatic Access

	Installation
	Programmatic Access

	Configuration
	Via CLI

	Via File

	Configuration options

	Editor Integration

	Checks
	Reference

	Troubleshooting
	I’m not seeing any warnings

	It’s telling me there’s a syntax error when there’s clearly not.

	Development
	How it works

	Adding a check

	Troubleshooting

	Testing the code

	Using the Docker container

	This documentation

Introduction

What is sql-lint?

sql-lint is a linter for SQL dialects. It currently supports MySQL and
Postgres. It brings errors to your attention, suggests what’s wrong with them,
why it may be wrong, and what you can do as a developer to fix it. Generally
these errors are more verbose and specific than those coming from an SQL server.

Here’s a small excerpt of its use:

: sql-lint test/test-files//test.sql
test/test-files//test.sql:16 [sql-lint: unmatched-parentheses] Unmatched parentheses.
test/test-files//test.sql:20 [sql-lint: missing-where] DELETE statement missing WHERE clause.
test/test-files//test.sql:22 [sql-lint: invalid-drop-option] Option 'thing' is not a valid option, must be one of '["database","event","function","index","logfile","procedure","schema","server","table","view","tablespace","trigger"]'.
test/test-files//test.sql:26 [sql-lint: invalid-truncate-option] Option 'something' is not a valid option, must be one of '["table"]'.
test/test-files//test.sql:30 [sql-lint: odd-code-point] Unexpected code point.
test/test-files//test.sql:32 [sql-lint: invalid-limit-quantifier] Argument 'test' is not a valid quantifier for LIMIT clause.
test/test-files//test.sql:24 [ER_PARSE_ERROR] You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'CREATE test person' at line 1
test/test-files//test.sql:39 [ER_NO_SUCH_TABLE] Table 'symfony.dont_exist' doesn't exist

Usage

sql-lint is used from the command line in several ways.

Via stdin

echo "DELETE FROM person;" | sql-lint

With a file

sql-lint test-file.sql

Command line options

-V –version

The version of sql-lint.
Useful for bug reports and confirming what features are available to you.

sql-lint --version
> 0.0.11

-d –driver

mysql | postgres

Default is mysql.

The driver to use.

-v –verbose

How verbose to be with output. -v will print out the output from the lexer.
Usually you do not want any verbosity. Useful for bug reports and debugging.

sql-lint --verbose
> ...

–config

The path for the configuration file.

Default is $HOME/.config/sql-lint/config.json

–format

simple | json

Default is simple.

The output format of sql-lint.

simple is the most user friendly and human readable. You won’t usually change
the format unless you have a reason to.

echo 'DELETE FROM person;' | sql-lint
> stdin:1 [sql-lint: missing-where] DELETE statement missing WHERE clause.

json can be used if you wish. Usually this is done for editor
integration or for consumption via some other service.

echo 'DELETE FROM person;' | sql-lint --format json
> {
 "source":"stdin",
 "error":"[sql-lint: missing-where] DELETE statement missing WHERE clause.",
 "line":1
}

–host

The host for the connection.

–user

The user for the connection.

–password

The password for the connection.

–port

Default is 3306.

The port for the connection.

-h –help

: sql-lint -h
Usage: sql-lint [options]

Options:
 -V, --version output the version number
 --fix [string] The .sql string to fix
 -d, --driver <string> The driver to use, must be one of ['mysql', 'postgres']
 -v, --verbose Brings back information on the what it's linting and the tokens generated
 --format <string> The format of the output, can be one of ['simple', 'json'] (default: "simple")
 --host <string> The host for the connection
 --user <string> The user for the connection
 --password <string> The password for the connection
 --port <string> The port for the connection
 --config <string> The path to the configuration file
 -h, --help display help for command

Programmatic Access

import sqlLint from 'sql-lint'

// using async/await

const errors = await sqlLint({
 sql: 'SELECT my_column FROM my_table',
})

// or using promise

sqlLint({ sql: 'SELECT my_column FROM my_table' }).then(errors => {
 for (const error of errors) {
 // do something
 }
})

Parameters

sql-lint accepts an object using the following interface as its only argument

{
 sql: string
 host?: string
 user?: string
 port?: number
 driver?: string
 prefix?: string
 password?: string
 verbosity?: number
}

Notes on some of the parameters

sql: can have multiple queries separated by ;

host: if host is not provided sql-lint will only perform checks that do not require a connection

driver: defaults to mysql

port: if port is not provided it will use the default port for the driver you are using

Output

sql-lint returns an array of objects with the following shape

{
 line: number
 error: string
 source: string
 additionalInformation: string
}

Installation

Installation is simple. Download a pre-built
binary [https://github.com/joereynolds/sql-lint/releases] from Github. Once
you’ve installed sql-lint, you will want to configure it for the best
experience.

sql-lint supports Mac, Linux, and Windows.

If you prefer, you can do npm i -g sql-lint or yarn global add sql-lint if you’re using yarn.

Programmatic Access

For programmatic access you’ll want to instead install sql-lint into your node project with npm i sql-lint or yarn add sql-lint.

Configuration

Configuring sql-lint to connect to your database of choice allows even more
errors to come through. Errors that sql-lint wouldn’t find itself. To do this
is easy, simply supply the connection details to your database in one of two
ways:

Via CLI

sql-lint --driver="mysql" --host="localhost" --user="root" --password="hunter2"

Via File

sql-lint will search the current working directory and its parent directories
for a configuration file .sql-lint.json. This allows you to have
directory-local configurations for different projects. If no .sql-lint.json
is found, it will fall back to the global configuration file.

A global configuration file for sql-lint can reside in
~/.config/sql-lint/config.json. It follows the XDG Base Directory
Specification [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html].
Specifically, it uses $HOME/.config.

You can also manually specify a path for the config with the --config flag.

You should put the following in there for more intelligent errors to come through

{
 "driver": "mysql",
 "host": "localhost",
 "user": "root",
 "password": "hunter2",
 "port": 3306
}

Configuration options

An exhaustive list of the configuration options for your config.json file are
below.

driver

The driver to be used to check for errors.
Accepted ones are mysql and postgres.

Optional, default is mysql.

host

The host of the database server.

user

The user for the database server.

password

The password for the database server.

port

The port to connect to.

Optional, default is 3306.

ignore-errors

Don’t want to be warned about a particular error?
In that case add it to the ignore-errors array in ~/.config/sql-lint/config.json.

{
 "host": "localhost",
 "user": "root",
 "password": "password",
 "ignore-errors": [
 "odd-code-point",
 "missing-where"
]
}

The example above will skip checks for odd code points and DELETE statements with missing WHERE clauses.

For a full list of all available checks, see the check
documentation

You cannot skip checks that are returned from the DB server itself, only the checks built into sql-lint.

Note that this option is also available as a flag on the cli.
i.e.

sql-lint --ignore-errors=trailing-whitespace some-sql-file.sql

Multiple errors can be comma separated:

sql-lint --ignore-errors=trailing-whitespace,missing-where,hungarian-notation some-sql-file.sql

Example configuration

The below configuration contains every option available.

{
 "host": "localhost",
 "user": "root",
 "password": "password",
 "ignore-errors": [
 "odd-code-point",
 "missing-where",
 "invalid-drop-option",
 "invalid-create-option",
 "invalid-truncate-option",
 "invalid-alter-option",
 "hungarian-notation",
 "trailing-whitespace"
]
}

A word of warning

Do not version control your configuration file unless you know what you’re
doing. Stick it in your global .gitignore to be safe.

Editor Integration

sql-lint can integrate with any editor that supports external plugins.

Vim / Neovim

Ale

sql-lint can be integrated into (Neo)Vim with Ale [https://github.com/dense-analysis/ale/].

Vanilla

If you want to go without a plugin, the simplest option is to run the following:

:!sql-lint %

Checks

sql-lint comes with its own suite of checks. Aside from its own checks, it
also returns any errors from the SQL server you have connected to. Generally
you’ll find that the errors from sql-lint are more informative than those from
the server. That said, you will still want errors from the server as it covers
more cases and will catch things that sql-lint does not.

Reference

unmatched-parentheses

Shown when a query has an unbalanced amount of parentheses.

Example output

test/test-files//test.sql:16 [sql-lint: unmatched-parentheses] Unmatched parentheses.

missing-where

Shown when a DELETE statement is missing a WHERE clause.

Example output

test/test-files/test.sql:20 [sql-lint: missing-where] DELETE statement missing WHERE clause.

invalid-drop-option

Shown when an invalid option is given to the DROP statement.

Example output

test/test-files/test.sql:22 [sql-lint: invalid-drop-option] Option 'thing' is not a valid option, must be one of '["database","event","function","index","logfile","procedure","schema","server","table","view","tablespace","trigger"]'.

invalid-create-option

Shown when an invalid option is given to the CREATE statement.

Example output

:24 [sql-lint: invalid-create-option] Option 'test' is not a valid option, must be one of '["algorithm","database","definer","event","function","index","or","procedure","server","table","tablespace","temporary","trigger","user","unique","view"]'.

invalid-truncate-option

Shown when an invalid option is given to the TRUNCATE statement.

Example output

test/test-files/test.sql:26 [sql-lint: invalid-truncate-option] Option 'something' is not a valid option, must be one of '["table"]'.

invalid-alter-option

Shown when an invalid option is given to the ALTER statement.

Example output

test/test-files/test.sql:28 [sql-lint: invalid-alter-option] Option 'mlady' is not a valid option, must be one of '["column","online","offline","ignore","database","event","function","procedure","server","table","tablespace","view"]'.

odd-code-point

Shown when there are unsupported/unusual* code points in your code.

*This check came about whilst working Microsoft Excel. Microsoft likes to
add a lot of zany characters which can subtly break your data without you
realising.

Example output

test/test-files//test.sql:30 [sql-lint: odd-code-point] Unexpected code point.

invalid-limit-quantifier

Shown when you specify something other than a number to the LIMIT statement.

Example output

test/test-files//test.sql:32 [sql-lint: invalid-limit-quantifier] Argument 'test' is not a valid quantifier for LIMIT clause.

hungarian-notation

Shown when the string sp_ or tbl_ is present in the query.

Example output

test/test-files/test.sql:34 [sql-lint: hungarian-notation] Hungarian notation present in query

trailing-whitespace

Shown when a query has trailing whitespace.

Example output

test/test-files/test.sql:34 [sql-lint: trailing-whitespace] Trailing whitespace

Troubleshooting

I’m not seeing any warnings

Run sql-lint your-file and it will display the exception.
Add the -v flag for more information.

It’s telling me there’s a syntax error when there’s clearly not.

Chances are you’re using an old(er) version of MySQL.
EXPLAINing on INSERT|UPDATE|DELETE was added in Mysql 5.6.

Development

If you’re interested in helping further the development of sql-lint then read
on. Casual users can ignore this section.

How it works

A raw query (either from stdin, a file, or a string) hits main.ts.
This query then gets categorised into the type of statement it is (SELECT,
INSERT, UPDATE, DELETE etc…), as the SQL grammar is pretty damn huge, there is
a lexer per statement. This adds redundancy but increases flexibility.

Once a query has been categorised, it is then lexxed by the relevant lexer. See the
src/lexer directory for the inner workings.

i.e. if we have the statement

SELECT name FROM user

This will hit the lexer which will categorise this as a SELECT statement which
the SELECT lexer will then tokenise. The tokenised string is then
passed through to every checker to look for any linting errors.

Adding a check

If you want to add your own check, read on. It’s quite simple but also verbose.

This can probably be automated to make it WAY easier.

Anyway, here are the steps.

	Create a check under src/checker/checks

	The name of the class is also the name of the checker so name it well

	Add your check to src/barrel/checks.ts

	All checks live here so we can import them all conveniently

	Import your check in src/checker/checkFactory.ts

	Add your check to the checkMap in src/checker/checkFactory.ts

	Add it to the README.md so people know it’s a thing

	Add it to configuration.md. This is an exhaustive list of the checks

	Add tests. The name of the test should match the name of the check

	Add it to checks.md, the main documentation for checks

	npm run build to compile the changes

Troubleshooting

TypeError: checkMap[check] is not a constructor

Your check is not being picked up by the checkerRunner. log out what the value
of checks is in checkerRunner after the spliceing.

Testing the code

Testing requires sql-lint to be installed.

npm install -g sql-lint
./build/build.sh //This will run more than just the tests (recommended)

Using the Docker container

First, make sure port 3306 is available locally. (You can do this by
inspecting the output of sudo lsof -i :3306 and docker ps and killing
anything using that port) Now do:

docker-compose up --build -d --force-recreate

At this point the container(s) will be up and ready to use. You can login with
the following credentials: mysql -u root -ppassword.

Here’s an example of a query:

docker exec sqllint_mysql_1 mysql -u root -ppassword -e "SHOW DATABASES"

Connecting sql-lint to the Docker container

Change your config file in ~/.config/sql-lint/config.json to have the following values:

{
 "driver": "mysql",
 "host": "localhost",
 "user": "root",
 "password": "password",
 "port": 3306
}

This documentation

This documentation is built on sphinx and readthedocs. To run it locally,
you will need the following:

	The sql-lint repository (documentation lies in docs/)

	sphinx to be installed (pip install sphinx)

	sphinx-rtd-theme to be installed (pip install sphinx-rtd-theme)

	recommonmark to be installed (pip install recommonmark)

Once those prerequisites are met, you can edit the files and see them exactly
how they would appear on readthedocs.

installed.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to sql-lint’s documentation!

 		
 Introduction

 		
 What is sql-lint?

 		
 Usage

 		
 Via stdin

 		
 With a file

 		
 Command line options

 		
 -V –version

 		
 -d –driver

 		
 -v –verbose

 		
 –config

 		
 –format

 		
 –host

 		
 –user

 		
 –password

 		
 –port

 		
 -h –help

 		
 Programmatic Access

 		
 Parameters

 		
 Notes on some of the parameters

 		
 Output

 		
 Installation

 		
 Programmatic Access

 		
 Configuration

 		
 Via CLI

 		
 Via File

 		
 Configuration options

 		
 driver

 		
 host

 		
 user

 		
 password

 		
 port

 		
 ignore-errors

 		
 Example configuration

 		
 A word of warning

 		
 Editor Integration

 		
 Vim / Neovim

 		
 Checks

 		
 Reference

 		
 unmatched-parentheses

 		
 missing-where

 		
 invalid-drop-option

 		
 invalid-create-option

 		
 invalid-truncate-option

 		
 invalid-alter-option

 		
 odd-code-point

 		
 invalid-limit-quantifier

 		
 hungarian-notation

 		
 trailing-whitespace

 		
 Troubleshooting

 		
 I’m not seeing any warnings

 		
 It’s telling me there’s a syntax error when there’s clearly not.

 		
 Development

 		
 How it works

 		
 Adding a check

 		
 Troubleshooting

 		
 TypeError: checkMap[check] is not a constructor

 		
 Testing the code

 		
 Using the Docker container

 		
 Connecting sql-lint to the Docker container

 		
 This documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

